Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
View ; 3(4), 2022.
Article in English | ProQuest Central | ID: covidwho-1958862

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID‐19, caused by SARS‐Cov‐2) is a big challenge for global health systems and the economy. Rapid and accurate tests are crucial at early stages of this pandemic. Reverse transcription‐quantitative real‐time polymerase chain reaction is the current gold standard method for detection of SARS‐Cov‐2. It is impractical and costly to test individuals in large‐scale population screens, especially in low‐ and middle‐income countries due to their shortage of nucleic acid testing reagents and skilled staff. Accordingly, sample pooling, such as for blood screening for syphilis, is now widely applied to COVID‐19. In this paper, we survey and review several different pooled‐sample testing strategies, based on their group size, prevalence, testing number, and sensitivity, and we discuss their efficiency in terms of reducing cost and saving time while ensuring sensitivity.

3.
Front Cell Infect Microbiol ; 11: 755508, 2021.
Article in English | MEDLINE | ID: covidwho-1497026

ABSTRACT

COVID-19 continues to circulate globally in 2021, while under the precise policy implementation of China's public health system, the epidemic was quickly controlled, and society and the economy have recovered. During the pandemic response, nucleic acid detection of SARS-CoV-2 has played an indispensable role in the first line of defence. In the cases of emergency operations or patients presenting at fever clinics, nucleic acid detection is required to be performed and reported quickly. Therefore, nucleic acid point-of-care testing (POCT) technology for SARS-CoV-2 identification has emerged, and has been widely carried out at all levels of medical institutions. SARS-CoV-2 POCT has served as a complementary test to conventional polymerase chain reaction (PCR) batch tests, thus forming an experimental diagnosis platform that not only guarantees medical safety but also improves quality services. However, in view of the complexity of molecular diagnosis and the biosafety requirements involved, pathogen nucleic acid POCT is different from traditional blood-based physical and chemical index detection. No guidelines currently exist for POCT quality management, and there have been inconsistencies documented in practical operation. Therefore, Shanghai Society of Molecular Diagnostics, Shanghai Society of Laboratory Medicine, Clinical Microbiology Division of Shanghai Society of Microbiology and Shanghai Center for Clinical Laboratory have cooperated with experts in laboratory medicine to generate the present expert consensus. Based on the current spectrum of major infectious diseases in China, the whole-process operation management of pathogen POCT, including its application scenarios, biosafety management, personnel qualification, performance verification, quality control, and result reporting, are described here. This expert consensus will aid in promoting the rational application and robust development of this technology in public health defence and hospital infection management.


Subject(s)
COVID-19 , Nucleic Acids , China , Consensus , Humans , Point-of-Care Testing , SARS-CoV-2
4.
Journal of Physics: Conference Series ; 1570(1), 2020.
Article in English | ProQuest Central | ID: covidwho-1402261

ABSTRACT

Affected by the COVID-19 epidemic, smart city and logistics in China have been developed significantly. This study is based on the accelerated development of smart cities and smart logistics after the outbreak of COVID-19 in China, and combined with literature, it puts forward the update of smart cities and the trend of gradually centralized, intelligent and intensive development of China’s logistics industry.

5.
J Clin Lab Anal ; 35(6): e23804, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1241506

ABSTRACT

BACKGROUND: Before public health emergencies became a major challenge worldwide, the scope of laboratory management was only related to developing, maintaining, improving, and sustaining the quality of accurate laboratory results for improved clinical outcomes. Indeed, quality management is an especially important aspect and has achieved great milestones during the development of clinical laboratories. CURRENT STATUS: However, since the coronavirus disease 2019 (COVID-19) pandemic continues to be a threat worldwide, previous management mode inside the separate laboratory could not cater to the demand of the COVID-19 public health emergency. Among emerging new issues, the prominent challenges during the period of COVID-19 pandemic are rapid-launched laboratory-developed tests (LDTs) for urgent clinical application, rapid expansion of testing capabilities, laboratory medicine resources, and personnel shortages. These related issues are now impacting on clinical laboratory and need to be effectively addressed. CONCLUSION: Different from traditional views of laboratory medicine management that focus on separate laboratories, present clinical laboratory management must be multidimensional mode which should consider consolidation of the efficient network of regional clinical laboratories and reasonable planning of laboratories resources from the view of overall strategy. Based on relevant research and our experience, in this review, we retrospect the history trajectory of laboratory medicine management, and also, we provide existing and other feasible recommended management strategies for laboratory medicine in future.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Clinical Laboratory Services , Clinical Laboratory Techniques/standards , Laboratories , Clinical Laboratory Services/organization & administration , Clinical Laboratory Services/standards , Humans , Laboratories/organization & administration , Laboratories/standards , Point-of-Care Testing , Public Health , Quality Assurance, Health Care
6.
J Virol Methods ; 293: 114144, 2021 07.
Article in English | MEDLINE | ID: covidwho-1157566

ABSTRACT

Recent reports have compared the analytical sensitivities of some SARS-CoV-2 RT-PCR assays, but differences in the viral materials used for these evaluations made comprehensive conclusions difficult. We carried out a direct comparison of the analytical sensitivities of 14 conventional and three rapid RT-PCR assays for the detection of SARS-CoV-2. The comparison was performed utilizing a certified reference material for SARS-CoV-2 RNA that was serially two-fold diluted in RNA storage solution. Our results show that the analytical sensitivities of the 17 assays varied within an 8-fold range (100-800 copies/mL). Moreover, a trend with some rapid assays yielding slightly higher analytical sensitivities (2- to 4-fold) compared with conventional assays was observed. We conclude that most of the RT-PCR assays can be used for routine COVID-19 diagnosis, but some assays with the poorest analytical sensitivities may lead to false-negative results when used to identify asymptomatic individuals who can carry a low viral load but still be infectious. These findings should be kept in mind when selecting high-sensitivity and rapid assays.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/genetics , Humans , Sensitivity and Specificity
7.
Anal Chem ; 93(2): 828-833, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-1065763

ABSTRACT

A variety of surface plasmon resonance (SPR) sensing devices have been extensively used in biochemical detection for their characteristics of label-free, highly sensitive, and faster detecting. Among them, the spectrum-based SPR sensing devices have offered us great advantages in high-throughput sensing due to their large dynamic range and the possibility of detection resolution similar to that offered by angle interrogation. This paper demonstrates a spectrum-based SPR imaging sensing system with fast wavelength scanning capability achieved by an acousto-optic tunable filter (AOTF) and a low-cost and speckle-free halogen lamp implemented as the SPR excitation source. Especially, we developed a novel four-parameter-based spectral curve readjusting (4-PSCR) method for data processing, which offered us a faster and more accurate spectral data curve fitting process than the traditional polynomial fitting method. With the configuration, we have also conducted an SPR high-throughput detection of the novel coronavirus (COVID-19) spike protein, proving its application possibility in the screening of COVID-19 with high accuracy. We believe that the higher sensitivity and accuracy of the system have made it readily used in biochemical imaging and detecting applications.


Subject(s)
Spike Glycoprotein, Coronavirus/analysis , Surface Plasmon Resonance/methods , Algorithms , COVID-19/diagnosis , COVID-19/virology , Humans , Limit of Detection , Optics and Photonics , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance/instrumentation , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL